Волновое уравнение - Definition. Was ist Волновое уравнение
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Волновое уравнение - definition

Уравнение колебания струны; Уравнение колебаний струны
  • [[Импульс]], отражающийся от закрепленных граничных концов,
упругие колебания моделируются волновым уравнением

ВОЛНОВОЕ УРАВНЕНИЕ         
дифференциальное уравнение с частными производными 2-го порядка, описывающее процесс распространения возмущений в некоторой среде. Напр., малые колебания натянутой струны описываются волновым уравнением где u(х,t) - искомая функция - отклонение струны от положения равновесия в точке с координатой х в момент t, a - скорость распространения возмущения вдоль струны.
Волновое уравнение         

дифференциальное уравнение с частными производными, описывающее процесс распространения возмущений в некоторой среде. В случае малых возмущений и однородной изотропной среды В. у. имеет вид:

где х, у, z - пространственные переменные, t - время, u = u (х, у, z) - искомая функция, характеризующая возмущение в точке (х, у, z) в момент t, а - скорость распространения возмущения. В. у. является одним из основных уравнений математической физики и широко используется в приложениях. Если u зависит только от двух (одной) пространственных переменных, то В. у. упрощается и называется двумерным (одномерным). В. у. допускает решение в виде "расходящейся сферической волны":

u = f (t - r/a)/r,

где f - произвольная функция, a

Особый интерес представляет так называемое элементарное решение (элементарная волна):

u = δ (t - r/a)/r

(где δ - Дельта-функция), дающее процесс распространения возмущения, произведённого мгновенным точечным источником (действовавшим в начале координат при t = 0). Образно говоря, элементарная волна представляет собой "бесконечный всплеск" на окружности r = at, удаляющийся от начала координат со скоростью а с постепенным уменьшением интенсивности. При помощи наложения элементарных волн можно описать процесс распространения произвольного возмущения.

Малые колебания струны описываются одномерным В. у.:

Ж. Д'Аламбер предложил (1747) метод решения этого В. у. в виде наложения прямой и обратной волн: u = f (x - at) + g (x + at), а Л. Эйлер (1748) установил, что функции f и g определяются заданием так называемых начальных условий (См. Начальное условие).

Лит.: Тихонов А. Н. и Самарский А. А., Уравнения математической физики, 3 изд., М., 1966.

П. И. Лизоркин.

Волновое уравнение         
Волновое уравнение в физике — линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах (акустика, преимущественно линейная: звук в газах, жидкостях и твёрдых телах) и электромагнетизме (электродинамике). Находит применение и в других областях теоретической физики, например при описании гравитационных волн.

Wikipedia

Волновое уравнение

Волновое уравнение в физике — линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах (акустика, преимущественно линейная: звук в газах, жидкостях и твёрдых телах) и электромагнетизме (электродинамике). Находит применение и в других областях теоретической физики, например при описании гравитационных волн. Является одним из основных уравнений математической физики.

Beispiele aus Textkorpus für Волновое уравнение
1. В двадцатые годы XIX века великий математик Пуассон решил волновое уравнение и описал распространение упругих колебаний в твердых средах - это и стало основой сейсморазведки.
Was ist ВОЛНОВОЕ УРАВНЕНИЕ - Definition